MODULE 2 : COMMON TECHNICAL DOCUMENT SUMMARIES

General Principles of Nonclinical Overview and Summaries

This guideline provides recommendations for the harmonisation of the Nonclinical Overview, Nonclinical Written Summary, and Nonclinical Tabulated Summaries.

The primary purpose of the Nonclinical Written and Tabulated Summaries should be to provide a comprehensive factual synopsis of the nonclinical data. The interpretation of the data, the clinical relevance of the findings, cross-linking with the quality aspects of the pharmaceutical, and the implications of the nonclinical findings for the safe use of the pharmaceutical (i.e., as applicable to labeling) should be addressed in the Overview.

2.4 NONCLINICAL OVERVIEW

The Nonclinical Overview should provide an integrated overall analysis of the information in the Common Technical Document. In general, the Nonclinical Overview should not exceed about 30 pages.

General Aspects

The Nonclinical Overview should present an integrated and critical assessment of the pharmacologic, pharmacokinetic, and toxicologic evaluation of the pharmaceutical. Where relevant guidelines on the conduct of studies exist, these should be taken into consideration, and any deviation from these guidelines should be discussed and justified. The nonclinical testing strategy should be discussed and justified. There should be comment on the GLP status of the studies submitted. Any association between nonclinical findings and the quality characteristics of the human pharmaceutical, the results of clinical trials, or effects seen with related products should be indicated, as appropriate.

Except for biotechnology-derived products, an assessment of the impurities and degradants present in the drug substance and product should be included along with what is known of their potential pharmacologic and toxicologic effects. This assessment should form part of the justification for proposed impurity limits in the drug substance and product, and be appropriately cross-referenced to the quality documentation. The implications of any differences in the chirality, chemical form, and impurity profile between the compound used in the nonclinical studies and the product to be marketed should be discussed. For biotechnologyderived products, comparability of material used in nonclinical studies, clinical studies, and proposed for marketing should be assessed. If a drug product includes a novel excipient, an assessment of the information regarding its safety should be provided.

Relevant scientific literature and the properties of related products should be taken into account. If detailed references to published scientific literature are to be used in place of studies conducted by the applicant, this should be supported by an appropriate justification that reviews the design of the studies and any deviations from available guidelines. In addition, the availability of information on the quality of batches of drug substance used in these referenced studies should be discussed.

The Nonclinical Overview should contain appropriate reference citations to the Tabulated Summaries, in the following format: (Table X.X, Study/Report Number).

Content and Structural Format

The Nonclinical Overview should be presented in the following sequence:

Overview of the nonclinical testing strategy

Pharmacology Pharmacokinetics Toxicology Integrated overview and conclusions List of literature references

Studies conducted to establish the pharmacodynamic effects, the mode of action, and potential side effects should be evaluated and consideration should be given to the significance of any issues that arise.

The assessment of the pharmacokinetic, toxicokinetic, and metabolism data should address the relevance of the analytical methods used, the pharmacokinetic models, and the derived parameters. It might be appropriate to cross-refer to more detailed consideration of certain issues within the pharmacology or toxicology studies (e.g. impact of the disease states, changes in physiology, anti-product antibodies, cross-species consideration of toxicokinetic data). Inconsistencies in the data should be discussed. Inter-species comparisons of metabolism and systemic exposure comparisons in animals and humans (AUC, Cmax, and other appropriate parameters) should be discussed and the limitations and utility of the nonclinical studies for prediction of potential adverse effects in humans highlighted.

The onset, severity, and duration of the toxic effects, their dose-dependency and degree of reversibility (or irreversibility), and species- or gender-related differences should be evaluated and important features discussed, particularly with regard to:

- pharmacodynamics
- toxic signs
- causes of death
- pathologic findings
- genotoxic activity the chemical structure of the compound, its mode of action, and its relationship to known genotoxic compounds
- carcinogenic potential in the context of the chemical structure of the compound, its relationship to known carcinogens, its genotoxic potential, and the exposure data
- the carcinogenic risk to humans if epidemiologic data are available, they should be taken into account
- fertility, embryofetal development, pre-and post-natal toxicity
- studies in juvenile animals
- the consequences of use before and during pregnancy, during lactation, and during pediatric development
- local tolerance
- other toxicity studies/ studies to clarify special problems

The evaluation of toxicology studies should be arranged in a logical order so that all relevant data elucidating a certain effect / phenomenon are brought together. Extrapolation of the data from animals to humans should be considered in relation to:

- animal species used
- numbers of animals used
- routes of administration employed
- dosages used
- duration of treatment or of the study
- systemic exposures in the toxicology species at no observed adverse effect levels and at toxic doses, in relation to the exposures in humans at the maximum recommended human dose. Tables or figures summarising this information are recommended.
- the effect of the drug substance observed in nonclinical studies in relation to that expected or observed in humans

If alternatives to whole-animal experiments are employed, their scientific validity should be discussed.

The Integrated Overview and Conclusions should clearly define the characteristics of the human pharmaceutical as demonstrated by the nonclinical studies and arrive at logical, well-argued conclusions supporting the safety of the product for the intended clinical use. Taking the pharmacology, pharmacokinetics, and toxicology results into account, the implications of the nonclinical findings for the safe human use of the pharmaceutical should be discussed (i.e., as applicable to labeling).

2.6 NONCLINICAL WRITTEN AND TABULATED SUMMARIES

Nonclinical Written Summaries

Introduction

This guideline is intended to assist authors in the preparation of nonclinical pharmacology, pharmacokinetics, and toxicology written summaries in an acceptable format. This guideline is not intended to indicate what studies are required. It merely indicates an appropriate format for the nonclinical data that have been acquired.

The sequence and content of the Nonclinical Written Summary sections are described below. It should be emphasised that no guideline can cover all eventualities, and common sense and a clear focus on the needs of the regulatory authority assessor are the best guides to constructing an acceptable document. Therefore, applicants can modify the format if needed to provide the best possible presentation of the information, in order to facilitate the understanding and evaluation of the results.

Whenever appropriate, age- and gender-related effects should be discussed. Relevant findings with stereoisomers and/or metabolites should be included, as appropriate. Consistent use of units throughout the Summaries will facilitate their review. A table for converting units might also be useful.

In the Discussion and Conclusion sections, information should be integrated across studies and across species, and exposure in the test animals should be related to exposure in humans given the maximum intended doses.